Extended Abstracts of Papers
(Oral and Poster Presentations)

EUROPEAN ASSOCIATION
OF
EXPLORATION GEOPHYSICISTS

56th Meeting and Technical Exhibition
Vienna, Austria – 6-10 June 1994
Electric fields used in resistivity survey are vectors. When horizontally layered medium is studied with traditional linear array oriented in X-direction, the second Y-component \(E_y \) normally is not informative being close to zero, while near 3D objects \(E_y \) does become comparable in value with the main \(E_x \) component (fig. 1). In latter case behavior of \(\rho_a \) is more complicated and its connection with geological model is not so evident. Calculation of \(\rho_a \) usually is fulfilled according to the simple formulae \(\rho_a = E_x^a / J_{o,x} \), where \(E_x^a = E_x^0 + E_x^a \), is the sum of X-components of primary and secondary field, \(J_{o,x} \) - X-component of current density in homogeneous halfspace. In inhomogeneous media anomalous part of electric field \(E_x^a \) may be several times as much as primary field \(E_x^0 \) and does not coincide with it in sign. As a result \(\rho_a \) value turns out to be negative or different greatly from the resistivity value of the surrounding. Thus \(\rho_a \) loses its physical meaning.

This difficulty may be overcome with the help of vector measurements, including values and signs for several components. This procedure has definite advantages - firstly, we receive fuller information about electrical field in the medium, and secondly, data interpretation with vectors may be done simpler.

It is known, according to the integral equation method theory, that the electric field in inhomogeneous medium is generated by two types of current sources: by primary current sources \(I_o \) and by secondary ones \(I_s \) placed at inner boundary between media with different resistivities.

\[
I_s(M) = 2 \frac{\rho_i - \rho_j}{\rho_i + \rho_j} E_n^t(M),
\]

where \(E_n^t \) is normal component of total electric field.

\[
E_n^t(M) = E_n^0(M) + \int_S I_s(P) \frac{\partial G(P,M)}{\partial n_M} \, ds.
\]

Expression (1) is Fredholm integral equation of the second type for relative secondary current source density \(I_s \) placed in
point M on the surface of a body. The first member in expression (2) is the primary field E_0^a and the second one describes the result of mutual interconnection of all secondary sources I_s or secondary (anomalous) field.

So, anomalous vectors of secondary field, being calculated as the difference between total measured field E_n^t and primary field E_n^a, are connected only with the secondary sources I_s on the surface between the body and surrounding.

These anomalous vectors are oriented in accordance with the structure of anomalous electric field. As is known vectors tends to gather towards negative sources and diverge from positive ones. So, if we continue two vectors, these will cross in the points of the secondary sources location (fig. 2). Group of vectors measured in the vicinity of two secondary current sources will be oriented partly to one and partly to another source. Fig.3 represents the structure of ρ_a vectors in the vicinity of a body of high resistivity. The primary current source is placed in point A. Surface of the body pushes electric current away. This situation is equivalent to the case with two secondary current sources with positive pole on the left body end and negative pole on the right end.

If we continued all vectors up to their cross-points, these points would be placed in the vicinity of secondary sources on body boundary. It is possible to divide all region into small square areas and to calculate the number of cross-points in each area taking into account their signs. This value may be convectually ascribed to the area center, and pseudo-tomographic map of the secondary sources distribution can be drawn. Three-dimensional measurements of the secondary sources distribution may result in 3D picture.

These main ideas were checked with 3D modeling program (IE3Rl) for direct current electric field calculation made in the laboratory of electrical prospecting at the geological faculty of Moscow university. Field experiments were carried out in town of Doneck (Ukraine) on water saturated zone in a rock massive with its surface occupied by buildings. Vector survey proved to be very effective in the case, when object under investigation cannot be accessible for direct measurements. For example an object located between two underground mines or objects under buildings in town, etc. In such cases traditional measurements with ordinary linear array do not appear to be effective.